REARRANGEMENTS OF N-ACYL-2-AZA-1, 5-HLXADIENES APPLICATION TO SYNTHESES OF TRAECHELANTNAMIDINE AND SUPINIDINE

David J Hart* and Teng-Kuei Yang Department of Chemistry, The Ohio State University, Columbus, Ohio 43210

Summary Efficient syntheses of the pyrrolizidine bases traechelanthamidine (4) and supinidine (5) via an N-acyliminium ion rearrangement-cyclization are described.

During the course of a study of N-acyl-2-aza-1,5-hexadlene rearrangements we found that treatment of carbinolamide l with formic acid gave pyrrolizidinone λ (mp 59-60°C.) as a single stereoisomer in a 81% yield.^{2,3} Although the mechanistic details of this transformation

remain to be established, it is conceivable that the reaction involves an initial N-acyl-2aza-Cope rearrangement $^{\mathrm{l}}$ to afford N-acyliminium ion $\mathfrak z$ followed by cyclization of $\mathfrak z$ to formate λ , $^{\prime\prime}$. This letter describes the application of this rearrangement to the synthesis of the simple pyrrolizidine bases traechelanthamidine $(\frac{1}{2})$ and supinidine (5) .^{6,7}

Our plan for adapting this reaction to the synthesis of pyrrolizidine alkaloids called for the preparation of pyrrolizidinone 16 followed by an appropriate degradation of the C-2 sidechain. The synthesis of $\frac{16}{\sqrt{6}}$ was accomplished in the following manner. Treatment of

aldehyde ϕ^8 with benzyloxymethyl lithium gave allylic alcohol 7 (89%). 9,10 Alcohol 7 was subjected to the orthoester Claisen rearrangement $\left[\text{CH}_3\text{C(OEt)}_3\right], \left[\text{CH}_3\text{CHOOH}, \right. 145^{\text{o}}\text{C}, \left. 21\text{h}\right]^\text{11}$ and the resulting ester β was saponified (10% aq. NaOH) to afford carboxylic acid β (86%). Treatment of $\frac{9}{2}$ with thionyl chloride gave acid chloride $\frac{10}{2}$ (83%) which was converted to acyl azide μ upon treatment with sodium azide in acetone-water Azide μ was warmed in benzene (reflux, lh) and the resulting crude isocyanate was treated with Grignard reagent $\rm 12^{12}$ in tetrahydrofuran to afford amide $\rm 13$ in a 62% overall yield from $\rm 10^{-13}$ When $\rm 13$ was stirred in formic acid at room temperature for ZIh, bicyclic lactams $\frac{19}{6}$, $\frac{15}{6}$, and $\frac{16}{6}$ (mp 81.5-82.5^oC) were isolated in 9%, 70%, and 10% yields, respectively. ¹⁴ The synthesis of 16 was completed by saponification of $\frac{15}{20}$ (94%, NaOH-MeOH-H₂0).

With the required ring system in hand, degradation of the C-2 sidechain proceeded as follows. Treatment of \downarrow 6 with mercuric oxide and iodine <code>in carbon</code> tetrachloride 15 gave a separable mixture of iodides $\frac{1}{\sqrt{2}}$ in a 30% yield along with considerable amounts of benzaldehyde as a major side product Even though $\frac{1}{\sqrt{2}}$ was converted in a 96% yield to pyrrolidinone 18 (mp 58-59 $^{\circ}$ C) upon treatment with tri-n-butyltin hydride 16 , we decided to exchange the benzyl blocking group for one which would be less susceptable to degradation. Thus, hydrogenolysis of 16 (H₂, Pd on C, EtOH) followed by selective acylation (Ac₂0, pyridine) of the resulting diol 12 gave acetate 20 (mp 108-109°C) in a 94% yield. Degradation of 20 as described for $\frac{1}{2}$ (HgO, I_2 ,CCl₄,85^oC, 6h) gave a mixture of iodides $\frac{21}{2}$ (89%)¹⁷ which was converted to traechelanthamldine (4) upon treatment followed by lithium aluminum hydrl:e (78%).18 with trl-g-butyltin hydride (90%) (67%; DBU, benzene, 80°C, 9h) * followed by reduction of the resulting allylic acetate 23 Alternatively, dehydrohalogenation of 21 with lithium aluminum hydride gave supinidine (5) in a 93% yield. 20,21,22

In summary, a new entry to both reduced and 1,2-dehydropyrrollzidine alkaloids has been developed. The route features an N-acyliminium ion rearrangement-cyclization

and couples a Curtlus rearrangement with an isocyanate addition reaction as an efficient sequence for generatlng the iminium ion precursor. The route is stereoselective and, in principle, could be rationally modified to afford C-1 isomeric and C-7 oxygenated pyrrolizidine alkaloids. Studies directed toward this end will appear in the full account of our studies on N-acyl-2-aza-1,5-hexadiene rearrangements.

Acknowledgements We thank the National Institutes of Health for their generous support of this work. We also thank Mr. Richard Welsenberger for performing mass spectral analyses.

References and Notes

- 1. Hart, D J.; Tsai, Y.-M. Tetrahedron Lett., 1981, 1567.
- 2 The rearrangement of 1 to 2 was first reported at the 181st National ACS Meeting, Atlanta, Georgia, March 30 - April 3, 1981, Paper No ORGN 13.
- 3 The stereochemistry of $2/1$ s unknown
- 4. A similar rearrangement-cycllzatlon was recently reported: Nossin, P.M.M.; Speckamp, W.N. Tetrahedron Lett., 1981, 3289
- 5. It 1s noted that the rearrangement-cyclvzatlons reported here and in reference 4 are closely related to the directed 2-azonia [3,3] sigmatropic rearrangements reported by Overman. For examples see Overman, L.E., Mendelson, L.T. J. Am. Chem. Soc., $1981, 103, 5579$ and references cited therein.
- 6 For a recent review see Robin, D.J. In "Advances in Heterocycllc Chemistry", Katritzky, A.R , Boulton, A J.,Eds., Academic Press New York, 1979. Vol. 24, p. 247.
- 7. For some syntheses of pyrrolizidine alkaloids reported after the appearance of Robins' For some syntheses of pyrrolizidine alkaloids reported after the appearance of Robins'
review see Iwashita, T., Kusumi, T., Kakisawa, H. J. Org. Chem., 1982, 47, 230. Taka-
no, S., Ogawa, N.; Ogasawara, K. Heterocycles, 1
- Prepared by PCC oxidation (Corey, E J , Suggs, J W. Tetrahedron Lett., 1975, 2647) of 8. 3 -methy $1-2$ -buten- $1-01$
- Still, W.C J. Am. Chem. Soc , 1978, 100, 1481. 9
- 10. All new compounds reported herein gave satisfactory ¹H-NMR, IR, mass, and in some cases carbon-13 NMR spectra.
- 11. Johnson, W.S., Werthemann, L.; Bartlett, W.R , Brockson, T.J , Li, T., Faulkner, D J ; Peterson, M.R. J. Am. Chem. Soc., 1970, 92, 741.
- 12. Stowell, J.C. J. Org Chem., 1976, 41, 560.
- 13. LeBel, N.A., Cherluck, R.M., Curtis, E.A. Synthesis, 1973, 678 and references cited therein.
- 14. The stereochemical assignment at $C(2)$ in $\frac{15}{10}$ and $\frac{16}{10}$ is tentative.
- 15. Greene, F D., Savitz, M.L., Osterholtz, F.D., Lau, H.H.; Smith, W.N., Zanet, P.M. J. Org. Chem., 1963, 28, 55. Macdonald, T L., O'Dell, D E J. Org Chem., 1981, 46, 1501 and references cited therein.
- 16. Kuivila, H G. Synthesis, 1970, 499.
- 17. Iodides 21 were contaminated by 1-4% of olefin 23 .
- The 200 MHz 1 H-NMR spectrum of $\frac{1}{6}$ and the melting point of its picrate (173.5 174.5^oC) 18 corresponded satisfactorally with those reported by others Danishefsky, S., McKee, R., Singh, R.K J. Am. Chem. Soc., 1977, 99, 4783 and references cited therein.
- 19. In addition, unstable enamide $\frac{1}{6}$ was obtained in a 31% yield
- The 1 H-NMR spectrum of 5 and the melting point of its picrate
(124 125°C) coressponded satisfactorally with those reported
by others.^{21,22}
- 21. For other syntheses of d1-supinidine see Robins, D J., Sakdarat, S. J. Chem Soc, Perkin I, 1979, 1734. Tufariello, J J.; Tette, J.P. J. Org. Chem., 1975, 40, 3866 and references cited therein.
- 22. For L H-NMR data on 5 see Culvenor, C.C.J., Woods, W.G Aust J. Chem., 1965 , 18. 1625

(Received in USA 30 March 1982)

